20 research outputs found

    Deep Neural Networks for Choice Analysis: Architectural Design with Alternative-Specific Utility Functions

    Full text link
    Whereas deep neural network (DNN) is increasingly applied to choice analysis, it is challenging to reconcile domain-specific behavioral knowledge with generic-purpose DNN, to improve DNN's interpretability and predictive power, and to identify effective regularization methods for specific tasks. This study designs a particular DNN architecture with alternative-specific utility functions (ASU-DNN) by using prior behavioral knowledge. Unlike a fully connected DNN (F-DNN), which computes the utility value of an alternative k by using the attributes of all the alternatives, ASU-DNN computes it by using only k's own attributes. Theoretically, ASU-DNN can dramatically reduce the estimation error of F-DNN because of its lighter architecture and sparser connectivity. Empirically, ASU-DNN has 2-3% higher prediction accuracy than F-DNN over the whole hyperparameter space in a private dataset that we collected in Singapore and a public dataset in R mlogit package. The alternative-specific connectivity constraint, as a domain-knowledge-based regularization method, is more effective than the most popular generic-purpose explicit and implicit regularization methods and architectural hyperparameters. ASU-DNN is also more interpretable because it provides a more regular substitution pattern of travel mode choices than F-DNN does. The comparison between ASU-DNN and F-DNN can also aid in testing the behavioral knowledge. Our results reveal that individuals are more likely to compute utility by using an alternative's own attributes, supporting the long-standing practice in choice modeling. Overall, this study demonstrates that prior behavioral knowledge could be used to guide the architecture design of DNN, to function as an effective domain-knowledge-based regularization method, and to improve both the interpretability and predictive power of DNN in choice analysis

    Calibrating Path Choices and Train Capacities for Urban Rail Transit Simulation Models Using Smart Card and Train Movement Data

    Full text link
    Transit network simulation models are often used for performance and retrospective analysis of urban rail systems, taking advantage of the availability of extensive automated fare collection (AFC) and automated vehicle location (AVL) data. Important inputs to such models, in addition to origin-destination flows, include passenger path choices and train capacity. Train capacity, which has often been overlooked in the literature, is an important input that exhibits a lot of variabilities. The paper proposes a simulation-based optimization (SBO) framework to simultaneously calibrate path choices and train capacity for urban rail systems using AFC and AVL data. The calibration is formulated as an optimization problem with a black-box objective function. Seven algorithms from four branches of SBO solving methods are evaluated. The algorithms are evaluated using an experimental design that includes five scenarios, representing different degrees of path choice randomness and crowding sensitivity. Data from the Hong Kong Mass Transit Railway (MTR) system is used as a case study. The data is used to generate synthetic observations used as "ground truth". The results show that the response surface methods (particularly Constrained Optimization using Response Surfaces) have consistently good performance under all scenarios. The proposed approach drives large-scale simulation applications for monitoring and planning

    Competition between shared autonomous vehicles and public transit: A case study in Singapore

    Full text link
    Emerging autonomous vehicles (AV) can either supplement the public transportation (PT) system or compete with it. This study examines the competitive perspective where both AV and PT operators are profit-oriented with dynamic adjustable supply strategies under five regulatory structures regarding whether the AV operator is allowed to change the fleet size and whether the PT operator is allowed to adjust headway. Four out of the five scenarios are constrained competition while the other one focuses on unconstrained competition to find the Nash Equilibrium. We evaluate the competition process as well as the system performance from the standpoints of four stakeholders -- the AV operator, the PT operator, passengers, and the transport authority. We also examine the impact of PT subsidies on the competition results including both demand-based and supply-based subsidies. A heuristic algorithm is proposed to update supply strategies for AV and PT based on the operators' historical actions and profits. An agent-based simulation model is implemented in the first-mile scenario in Tampines, Singapore. We find that the competition can result in higher profits and higher system efficiency for both operators compared to the status quo. After the supply updates, the PT services are spatially concentrated to shorter routes feeding directly to the subway station and temporally concentrated to peak hours. On average, the competition reduces the travel time of passengers but increases their travel costs. Nonetheless, the generalized travel cost is reduced when incorporating the value of time. With respect to the system efficiency, the bus supply adjustment increases the average vehicle load and reduces the total vehicle kilometer traveled measured by the passenger car equivalent (PCE), while the AV supply adjustment does the opposite

    Impact of Built Environment on First- and Last-Mile Travel Mode Choice

    No full text
    The paper studies the impacts of built environment (BE) on the first- and last-mile travel modal choice. We select Singapore as a case study. The data used for this work is extracted from the first- and last-mile trips to mass rapid transit (MRT) stations in the Household Interview Travel Survey of Singapore in 2012 with nearly 24,000 samples. The BE indicators are quantified based on four “D” variables: Density, Diversity, Design, and Distance to transit. We also take into account sociodemographic and trip-specific variables. Mixed logit (ML) modeling frameworks are adopted to estimate the impact of BE and the heterogeneity of taste across the sample. Based on the availability of light rail transit (LRT) in different areas, two modeling structures are implemented with binary ML models for non-LRT areas where “walk” and “bus” are the available travel modes, and multinomial ML models for areas where LRT is an additional alternative. The modeling results shed light on the following findings: BE—especially distance to MRT station, transportation infrastructures, land-use mix, and socioeconomic activities—significantly influences the first- and last-mile travel behaviors. Those who live or work close to MRT stations and in an area with high socioeconomic activities and land-use mix may have stronger preferences to walk for the first- and last-mile trips. The impact of physical BE (i.e., distance, infrastructures) is relatively homogeneous among the sample, while the impact of socioeconomic BE factors (i.e., floor space density, entropy) tends to vary across the sample

    Deep neural networks for choice analysis: Architecture design with alternative-specific utility functions

    No full text
    © 2020 Elsevier Ltd Whereas deep neural network (DNN) is increasingly applied to choice analysis, it is challenging to reconcile domain-specific behavioral knowledge with generic-purpose DNN, to improve DNN's interpretability and predictive power, and to identify effective regularization methods for specific tasks. To address these challenges, this study demonstrates the use of behavioral knowledge for designing a particular DNN architecture with alternative-specific utility functions (ASU-DNN) and thereby improving both the predictive power and interpretability. Unlike a fully connected DNN (F-DNN), which computes the utility value of an alternative k by using the attributes of all the alternatives, ASU-DNN computes it by using only k's own attributes. Theoretically, ASU-DNN can substantially reduce the estimation error of F-DNN because of its lighter architecture and sparser connectivity, although the constraint of alternative-specific utility can cause ASU-DNN to exhibit a larger approximation error. Empirically, ASU-DNN has 2–3% higher prediction accuracy than F-DNN over the whole hyperparameter space in a private dataset collected in Singapore and a public dataset available in the R mlogit package. The alternative-specific connectivity is associated with the independence of irrelevant alternative (IIA) constraint, which as a domain-knowledge-based regularization method is more effective than the most popular generic-purpose explicit and implicit regularization methods and architectural hyperparameters. ASU-DNN provides a more regular substitution pattern of travel mode choices than F-DNN does, rendering ASU-DNN more interpretable. The comparison between ASU-DNN and F-DNN also aids in testing behavioral knowledge. Our results reveal that individuals are more likely to compute utility by using an alternative's own attributes, supporting the long-standing practice in choice modeling. Overall, this study demonstrates that behavioral knowledge can guide the architecture design of DNN, function as an effective domain-knowledge-based regularization method, and improve both the interpretability and predictive power of DNN in choice analysis. Future studies can explore the generalizability of ASU-DNN and other possibilities of using utility theory to design DNN architectures

    Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks

    No full text
    Researchers often treat data-driven and theory-driven models as two disparate or even conflicting methods in travel behavior analysis. However, the two methods are highly complementary because data-driven methods are more predictive but less interpretable and robust, while theory-driven methods are more interpretable and robust but less predictive. Using their complementary nature, this study designs a theory-based residual neural network (TB-ResNet) framework, which synergizes discrete choice models (DCMs) and deep neural networks (DNNs) based on their shared utility interpretation. The TB-ResNet framework is simple, as it uses a ( 1-) weighting to take advantage of DCMs’ simplicity and DNNs’ richness, and to prevent underfitting from the DCMs and overfitting from the DNNs. This framework is also flexible: three instances of TB-ResNets are designed based on multinomial logit model (MNL-ResNets), prospect theory (PT-ResNets), and hyperbolic discounting (HD-ResNets), which are tested on three data sets. Compared to pure DCMs, the TB-ResNets provide greater prediction accuracy and reveal a richer set of behavioral mechanisms owing to the utility function augmented by the DNN component in the TB-ResNets. Compared to pure DNNs, the TB-ResNets can modestly improve prediction and significantly improve interpretation and robustness, because the DCM component in the TB-ResNets stabilizes the utility functions and input gradients. Overall, this study demonstrates that it is both feasible and desirable to synergize DCMs and DNNs by combining their utility specifications under a TB-ResNet framework. Although some limitations remain, this TB-ResNet framework is an important first step to create mutual benefits between DCMs and DNNs for travel behavior modeling, with joint improvement in prediction, interpretation, and robustness

    Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework

    No full text
    This study proposes a probabilistic framework to infer passengers’ responses to unplanned urban rail service disruptions using smart card data in tap-in-only public transit systems. We first identify 19 possible response behaviors that passengers may have based on their decision-making times and locations (i.e, the stage of their trips when an incident happened), including transferring to a bus line, canceling trips, waiting, delaying departure time, etc. A probabilistic model is proposed to estimate the mean and variance of the number of passengers in each of the 19 behavior groups using passengers’ smart card transactions. The 19 behavioral responses can be categorized from two aspects. From the behavioral aspect, they can be grouped into 5 aggregated response behaviors including using bus, using rail (changing or not changing route), not using public transit, and not being affected. The inference of the 19 behaviors can be classified into four cases based on the information used (historical trips vs. subsequent trips) and the context of the observed transactions (direct incident-related vs. indirect incident-related). The public transit system (bus and urban rail) of the Chicago Transit Authority (CTA) is used as a case study based on a real-world rail disruption incident. The model is applied with both synthetic data and real-world data. Results with synthetic data show that the proposed approach can estimate passengers’ behavior well. The mean absolute percentage error (MAPE) for the estimated expected number of passengers in each behavior group is 20.5%, which outperforms the rule-based benchmark method (60.3%). The estimation results with real-world data are consistent with the incident’s context. An indirect model validation method using demand change information and incident log data demonstrates the reasonableness of the results
    corecore